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Abstract. We consider the hadronic description of the B0
d → π+π− decay, with the aim to investigate the

strong phases generated by the final state interactions. The derivation of the dispersion relations using
the Lehmann–Symanzik–Zimmermann formalism and the Goldberger–Treiman method to include inelastic
effects in the spectral function are presented. We discuss the problem of quark–hadron duality and estimate
in the hadronic formalism the corrections to the factorized amplitude in the heavy quark limit.

1 Introduction

The inclusion of the strong interaction effects in the theory
of exclusive nonleptonic B decays is a very difficult task.
The problem has been investigated recently by many au-
thors, in particular, for charmless decays into light pseu-
doscalar mesons, since the strong phases of these ampli-
tudes are crucial for the determination of CP -violating
phases in present and future experiments [1]. The first
measurements of the branching fractions of the B de-
cays into ππ and πK final states [2–4] considerably stimu-
lated the theoretical and phenomenological work devoted
to these processes in various approaches. In the so-called
“naive factorization approximation” [5], the matrix ele-
ments of the operators entering the weak effective hamil-
tonian are expressed as products of meson decay constants
and hadronic form factors, which are evaluated in a phe-
nomenological way. An obvious deficiency of this approxi-
mation is the renormalization scale dependence of the re-
sults, expressed as µ-dependent Wilson coefficients mul-
tiplied by µ-independent hadronic form factors. Improve-
ments to the factorization approximation were discussed
in several papers [6–9]. Recent calculations of the B → ππ
decay amplitude were performed either in the generalized
QCD factorization approach [9–14], or by more conven-
tional perturbative QCD methods [15,16].
The nonleptonic B decays were also investigated re-

cently in a hadronic approach, in which a part of the
strong dynamics accompanying the weak decay is de-
scribed using the unitarity of the S-matrix, dispersion re-
lations and Regge phenomenology [17–27]. In the present
paper, we apply this approach to the particular case of
B0

d → π+π− decay. One aim of our study is to compare
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the predictions of the hadronic and the partonic treat-
ments and to test the validity of quark–hadron duality.
In the next section, we discuss the derivation of disper-

sion relations with respect to the momentum squared of
the external particles, by applying the Lehmann–
Symanzik–Zimmermann (LSZ) reduction formalism [28]
to the S-matrix element of the decay process. In Sect. 3
we explain the Goldberger–Treiman procedure to include
inelastic contributions in the spectral function and ap-
ply it to the amplitudes of the decay B0

d → π+π−. In
Sect. 4 we consider the problem of quark–hadron duality,
and estimate in the hadronic formalism the corrections to
the factorized amplitude produced by the final state in-
teractions in the heavy quark limit. Section 5 contains our
conclusions.

2 Dispersion relations for the decay amplitude

We consider the decay amplitude

A(B0
d → π+π−) = 〈π+(k1)π−(k2), out|Hw(0)|B0

d(p), in〉,
(1)

where the “in” and “out” states are defined with respect
to the strong interactions and Hw is the weak effective
hamiltonian density

Hw =
GF√
2

∑
j=u,c

VjdV
∗
jb (2)

×

C1(µ)O

j
1(µ) + C2(µ)O

j
2(µ) +

∑
i=3,...,8

Ci(µ)Oi(µ)


 .

In this relation, Oi are local ∆B = 1, ∆S = 0 operators,
and Ci the corresponding Wilson coefficients, which take
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into account perturbatively the strong dynamics at dis-
tances shorter than 1/µ. Using the expression (2) of the
weak hamiltonian, the decay amplitude (1) can be split in
two terms:

A(B0
d → π+π−) = VudV

∗
ubAu + VcdV

∗
cbAc, (3)

with the CP -violating phase γ = Arg(V ∗
ub) appearing in

the first term.
The physical amplitude (1) is calculated for p = k1+k2

at on-shell values of the momenta, p2 = m2
B , k

2
1 = m2

π,
k2
2 = m2

π. The extrapolation to off-shell external momenta
can be achieved by the LSZ reduction formalism [28]. In
[25] we applied this technique to the expression (1) of the
amplitude. As we shall see below, it is more convenient to
start from the S-matrix element

SB0
d→π+π− = 〈π+(k1)π−(k2), out|B0

d(p), in〉, (4)

where the transition from the “in” to the “out” states in-
cludes both the strong and weak interactions. The expres-
sion (1) of the decay amplitude is obtained by expanding
the S-matrix to first order in the weak hamiltonian. How-
ever, we can apply the LSZ reduction to the B meson in
(4), which leads to the alternative expression

A(B0
d → π+π−)

=
1√
2p0

〈π+(k1)π−(k2), out|ηB0(0)|0〉, (5)

where ηB0(x) = KxφB0(x) is the source of the meson B0
d

and φB0 its interpolating field (Kx is the Klein–Gordon op-
erator). We recall that in a Lagrangian theory the source,
which includes both the strong and weak interactions, can
be written formally as

ηB0(x) =
δLint

δφB0
− ∂µ

δLint

δ∂µφB0
. (6)

The matrix element in (5) can be defined for arbitrary
s = p2 = (k1+k2)2, the physical amplitude corresponding
to s = m2

B . We notice that (5) is similar to the definition
of the pion electromagnetic form factor, where ηB is re-
placed by the electromagnetic current Jµ. We can apply
therefore the standard methods used in deriving the dis-
persion relations for the pion form factor [29–31]. More
precisely, by the LSZ reduction of one final meson (say,
π+) in (5), we obtain

A(B0
d → π+π−)

=
i√

4k10p0

∫
dxeik1xθ(x0)〈π−(k2)|[ηπ+(x), ηB0(0)]|0〉

− i√
4k10p0

∫
dxeik1xδ(x0)

×〈π−(k2)|ik10[φπ+(x), ηB0(0)]
−[∂0φπ+(x), ηB0(0)]|0〉, (7)

where ηπ+(x) is the source of the reduced pion.
The second integral in (7) contains equal-time commu-

tators produced by the action of the Klein–Gordon opera-
tor Kx upon the function θ(x0). As shown in [30], the most

general form of this term, called “degenerate”, is a con-
stant or a polynomial of the Lorentz invariant variables.
To calculate the degenerate term, one needs the expres-
sion of the source ηB in terms of the interpolating field
φπ+ or its time derivative, which in a hadronic Lagrangian
theory might be obtained from the formal expression (6).
The commutators can then be evaluated in principle by
applying the canonical commutation rules, satisfied, up to
a normalization constant, by the interpolation fields [30].
However, in the standard model, the hadronic fields are
defined in terms of the underlying quark and gluon de-
grees of freedom, and the definition of the off-shell fields
might introduce ambiguities in the evaluation of the de-
generate term (the result depends also on which pion, π+

or π−, is reduced, since their quark content is different).
We now turn to the first term of (7), which is usu-

ally called “dispersive term”, and has a more complicated
structure as a function of the squared external momenta.
The integral defines a function holomorphic at the values
of the momenta for which it is convergent. First, due to
the presence of the θ(x0) function, the integral upon x0 in
(7) is convergent for Imk10 > 0, i.e. in the upper half of the
complex k10 plane. A detailed analysis must exploit also
the causality properties of the commutator [30], which re-
stricts the integral over the spatial variables to |x| < |x0|.
The difficult part of the conventional proofs of the disper-
sion relations is to show that the integrals over x0 and
x are convergent for complex values of the external mo-
menta. As discussed in [30], it is sometimes useful to go to
a particular Lorentz frame and consider a particular vari-
able, for instance k10, instead of trying to think in terms
of Lorentz invariants. Also, it is useful to treat simulta-
neously the matrix elements 〈ππ, out|ηB |0〉, 〈ππ, in|ηB |0〉
and 〈π|ηB |π〉, which are represented by the same analytic
function in various parts of the complex plane of the dis-
persive variable.
In the present case, it is convenient to choose the sys-

tem with the unreduced pion π− at rest (k2 = 0), when
k10 = (s − k2

1 − m2
π)/2mπ. In what follows we shall either

work with s variable keeping k2
1 = m2

π fixed, or with k2
1

variable at fixed s = m2
B . By expressing k2

1 in terms of k10
and the fixed Lorenz invariant momentum, the first term
of (7) depends only on the variable k10, and is analytic
in the complex k10 plane, except a possible discontinuity
along the real axis, given by [30]

σ(k10) =
1

2
√
4k01p0

[ ∑
n

δ(k1 + k2 − pn)

×〈π−(k2)|ηπ+(0)|n〉〈n|ηB0(0)|0〉
−

∑
n

δ(k1 + pn)〈π−(k2)|ηB0(0)|n〉

×〈n|ηπ+(0)|0〉
]
. (8)

This expression is obtained formally from (7) by replac-
ing iθ(x0) by 1/2, inserting a complete set of intermediate
states in the commutator and using translational invari-
ance [30]. In order to evaluate the spectral function, we re-
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call that the sources contain both the strong and the weak
interactions, the last ones being treated to first order. As
we shall see below, the spectral function takes different
forms, depending on the external momentum adopted as
dispersive variable.
Let us assume first that k2

1 is fixed at the physical
value k2

1 = m2
π, and treat the amplitude as a function of

the variable s = (k1+k2)2. In the reference system chosen
above k10 = (s−2m2

π)/2mπ and k2
1 = k2

10 −m2
π. It is easy

to see that in this case the second sum in the expression
(8) has no contribution. Indeed, since k2

1 = m2
π, the only

state which contributes is the one-pion state |n〉 = |π〉,
and 〈π|ηπ|0〉 = 0 [30].
As concerns the first sum of (8), the intermediate states

n which contribute are of two kinds: the first ones are gen-
erated by the weak part of the source ηB in the second
matrix element, and undergo a strong transition to the
final state π+π−, mediated by the strong part of ηπ. Ac-
cording to (5), the second matrix element is equal to the
weak decay amplitude of an off-shell meson B, with mo-
mentum squared equal to s, while the first matrix element
is a strong amplitude, evaluated at the c.m. momentum
squared equal to s. Therefore, the contribution of these
states in the unitarity sum represents the so-called “final
state interactions” (FSI). The lowest intermediate state
consists of two pions, which produces the lowest branch
point at k10 = mπ, or, equivalently, s = 4m2

π.
The intermediate states n of the second type are pro-

duced by the strong part of the source ηB in the second
matrix element, which describes the strong decay of an
off-shell B meson. The first matrix element, where the
contribution is of the weak part of ηπ, describes the weak
transition amplitudes from the state n to the final π+π−
state. These terms are usually interpreted as “initial state
interactions” (ISI). The lowest physical state which can
contribute is the pair B∗π, producing the lowest thresh-
old s = (mB∗ +mπ)2.
The whole amplitude can be recovered from the dis-

continuity by means of a dispersion integral. To write it
down, we need the asymptotic behavior of the discontinu-
ity, which is difficult to estimate, since it involves off-shell
quantities. Assuming, for simplicity, that one subtraction
is necessary, and combining the possible degenerate terms
discussed above with the subtraction constant of the dis-
persive part, we express the physical amplitude as

A(B0 → π+π−)

= A(s0) +
m2

B − s0

π

∞∫
4m2

π

ds
σFSI(s)

(s − m2
B − iε)(s − s0)

+
m2

B − s0

π

∞∫
(m∗

B+mπ)2

ds
σISI(s)

(s − m2
B)(s − s0)

, (9)

where

σFSI ≈
∑

n

δ(k1 + k2 − pn)M∗(n → ππ)A(B → n),

σISI ≈
∑

n

δ(k1 + k2 − pn)A∗(n → ππ)M(B → n) (10)

are the spectral functions associated to the final (initial)
state interactions, respectively. In these relations, A(M)
denote the amplitudes of the weak (strong) transitions, re-
spectively, evaluated for an off-shell B momentum squared
equal to s. Since B is stable with respect to the strong in-
teractions, mB < mB∗ +mπ, the initial state interactions
(the last integral in (9)) do not contribute to the on-shell
imaginary part. We mention that a dispersion relation
similar to (9) was derived recently in [32] for K → ππ
decay, starting from the definition (1) of the decay ampli-
tude, treating the weak hamiltonian Hw as the source of
a spurion, and using the Mandelstam representation.
As mentioned above, the expression (7) can be analyt-

ically continued also in the variable k2
1, at fixed s, equal to

the physical value s = m2
B . In this case, in the reference

system chosen above, k10 = (m2
B − k2

1 − m2
π)/2mπ and

k2
1 = [k

2
1 − (mB +mπ)2][k2

1 − (mB − mπ)2]/(2mπ)2. The
spectral function is given formally by the same expres-
sion (8), but now the contributions are different. First, we
notice that the second sum in (8), which previously van-
ished on account of k2

1 = m2
π, now includes terms which

are produced by the strong and the weak parts of the
source ηπ, for a variable k2

1. Just like in the discussion
above, there are intermediate states which are generated
by the strong decay of an off-shell pion, and then undergo
a weak transition mediated by the weak part of ηB , and
also intermediate states which are produced by the weak
part of ηπ and generate afterwards a pion and a B meson
through a strong interaction. In the first case the lowest
branch point is at k2

1 = 9m
2
π, corresponding to the inter-

mediate state with three pions, and in the second case at
k2
1 = (mB+mπ)2, corresponding to the intermediate state

πB. From the connection between k10 and k2
1 in the partic-

ular system mentioned above, one can see that the branch
cut corresponds to negative values of k10. This means that
these contributions originate actually from the matrix el-
ement 〈π|ηB |π〉, related to the B → ππ decay amplitude
by crossing symmetry.
As concerns the first sum in the spectral function (8),

the intermediate states which bring about a nonvanish-
ing contribution have p2

n = (k1 + k2)2 fixed at the value
m2

B . The strong part of ηB therefore gives no contribution,
since the lowest state possible (the pair B∗π) cannot be
produced at this energy. On the other hand, the weak part
of the source ηB has a nonvanishing contribution, produc-
ing intermediate particles which then undergo a strong in-
teraction. This contribution represents therefore the final
state interactions. The delta function implies the condi-
tion k2

1 = (pn −k2)2, where p2
n = m2

B and k2
2 = m2

π, which
gives for k2

1 the allowed range k2
1 ≤ (mB − mπ)2. We no-

tice that, unlike the other branch points discussed above,
which are determined by the lowest intermediate states in
the unitarity sum, the range of the variable k2

1 has a more
kinematical nature.
We express now the whole amplitude in terms of its

discontinuity by a dispersion integral. Assuming that one
subtraction is necessary and including the degenerate
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terms in the subtraction constant, we obtain

A(B0 → π+π−)

= A(κ2
0) +

(m2
π − κ2

0)
π

×
(mB−mπ)2∫

−∞
dk′2

1
σFSI(k′2

1 )
(k′2

1 − m2
π − iε)(k′2

1 − κ2
0)

+
(m2

π − κ2
0)

π

∞∫
9m2

π

dk′2
1

σ1(k′2
1 )

(k′2
1 − m2

π)(k′2
1 − κ2

0)

+
(m2

π − κ2
0)

π

∞∫
(mB+mπ)2

dk′2
1

σ2(k′2
1 )

(k′2
1 − m2

π)(k′2
1 − κ2

0)
, (11)

where σFSI is given formally by the same expression (10)
given above, evaluated now at fixed s = m2

B and variable
k2
1, and

σ1 ≈
∑

n=3π,...

δ(k1 + pn)A∗(n → πB)M(π → n),

σ2 ≈
∑

n=Bπ,...

δ(k1 + pn)M∗(n → πB)A(π → n). (12)

We denoted generically, as before, by A(M) the weak
(strong) amplitudes, respectively.
It is easy to see that both dispersion relations (9)

and (11) lead to the same discontinuity on shell, equal to
the spectral function σFSI evaluated for physical masses.
These relations might be useful in principle if the decay
amplitude can be calculated (by chiral theory, lattice, etc.)
at some particular points (s = s0 or k2

1 = κ2
0), with a bet-

ter accuracy than at the physical points, s = m2
B and

k2
1 = m2

π, respectively. The complete evaluation of the
dispersion relations is very difficult, since they involve off-
shell quantities in the spectral functions. However, as we
will show below, the dispersion relation (11) can be writ-
ten in a different form, more convenient for the study of
the final state interactions. We first remark that the spec-
tral function σFSI defined in (10) is actually independent
of the dispersive variable k2

1, for fixed (k1 + k2)2 = m2
B .

This can be easily seen by performing the phase space
integral in the first sum of (8) in the c.m. system, when
pn = k1 + k2 = 0 and the energy squared is equal to
m2

B . As the weak decay amplitude (the matrix element
〈n|ηB |0〉/(2p0)1/2 in (8)) and the invariant strong am-
plitude (the matrix element 〈π−(k2)|ηπ+(0)|n〉/(2k01)1/2)
depend both only on the Mandelstam variables and the
physical masses of the particles involved, the result of the
phase space integration at fixed s is independent of k2

1 and
contains only on-shell quantities1.
We notice that the most general form of a function

having a branch cut for −µ2 ≤ k2
1 ≤ (mB − mπ)2, with a

constant discontinuity σFSI, is
1 The unusual property of the spectral function to be inde-

pendent of the dispersive variable k2
1, was noticed a long time

ago [30]

AFSI(k2
1) = P(k2

1) +
σFSI

π
ln

[
k2
1 − (mB − mπ)2

µ2 + k2
1

]
, (13)

where P(k2
1) is a polynomial (more generally, an entire

function), independent on σFSI. In order to construct the
full decay amplitude we must add to the function AFSI the
contribution of the degenerate terms and the last two dis-
persion integrals in (11), with possible subtractions. All
these terms, as well as the polynomial P(k2

1), are inde-
pendent of the discontinuity σFSI. Therefore, by combin-
ing them into a single constant and choosing the scale
µ2 ≈ m2

B , we write the physical amplitude as

A(B0
d → π+π−)

= A0 +
σFSI

π
ln

[
m2

π

(mB − mπ)2
− 1

]
, (14)

where A0 is the genuine contribution which remains when
the long distance final state interactions are switched off,
i.e. σFSI = 0. It is worth mentioning that this separation
of the final state interactions from the other parts of the
dynamics was possible only due to the fact that σFSI does
not depend on the dispersive variable, allowing us to con-
struct AFSI according to (13). The subtraction constants
in the usual subtracted dispersion relations, like (9) or
(11), do not have a similar interpretation: they represent
the values of the amplitude at some particular points, and
depend implicitly on all the spectral function in the dis-
persion relation.
We shall end this section with some comments. First,

we recall that rigorous analytic properties in the external
momenta are proved in axiomatic field theory only for a
small region close to the physical masses [33]. Therefore,
the dispersion relations presented above can be accepted
only as an heuristic conjecture, whose validity remains to
be tested. We mention also that the off-shell analytic con-
tinuation in external momenta is in general plagued by
ambiguities. They may appear, in the present formalism,
in the evaluation of the degenerate terms and of the off-
shell amplitudes entering the spectral functions. Moreover,
we notice that even the analytic properties of the off-shell
amplitude may depend on the specific expression of the
on-shell amplitude, used as starting point of the extrap-
olation. For instance, by applying the LSZ procedure to
the expression (1) of the amplitude, we obtained in [25]
only a part of the dispersive branch cuts written in (9)
and (11). The contribution of the missing dispersion in-
tegrals (namely, the FSI contribution in (9) and the ISI
contribution in (11)) is hidden in the corresponding degen-
erate terms, which have a different form [25]. Of course,
one expects that the amplitude on-shell is recovered in an
univocal way, but the compensation of the ambiguities of
various terms is difficult to see in approximate calcula-
tions.
As concerns the phenomenological applications, the fi-

nal state interactions in B hadronic decays were investi-
gated the last years by means of dispersion relations with
respect to the momentum squared (s) of the B meson
[18–21] (recently, this method was applied also toK → ππ
decay [32–36]). These dispersion relations look more famil-
iar, due to their formal resemblance with the case of the
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pion form factor. However, as seen from (9), the similarity
is not complete, due to the presence of the initial strong
interactions in the weak decay and the appearance of off-
shell quantities. The dispersion relations with respect to
the momentum squared k2

1, which seem less intuitive, were
applied to B decays in [25] (we mention also one earlier
application of this technique for the calculation of the nu-
cleon form factor [31]). In Sect. 4 we shall use this type of
dispersion relations, written in the convenient form (14),
for discussing the effects of the final state interactions in
the B0 → π+π− decay. Before making this analysis, we
shall first investigate the spectral function σFSI appearing
in this relation.

3 The Goldberger–Treiman procedure

Following [9], we shall use the parametrization

A(B0
d → π+π−)

= i
GF√
2
m2

Bf+(m2
π)fπ|VudV

∗
ub|eiγ

×
[
Tu(B → π+π−) +

e−iγ

Rb
Tc(B → π+π−)

]
, (15)

obtained by extracting from the amplitudes Au and Ac of
(3) the “naive” factorized amplitude, expressed in terms of
the pion decay constant fπ and the B → π transition form
factor f+(m2

π) (Rb = |Vub/(λVcb)|(1−λ2/2) ≈ 0.377). The
spectral function σFSI defined in (10) can be written in a
similar way as

σFSI = i
GF√
2
m2

Bf+(m2
π)fπ|VudV

∗
ub|eiγ

×
[
σu

FSI +
e−iγ

Rb
σc

FSI

]
, (16)

where, recalling that σFSI is given by the first term in the
unitarity sum (8), we have

σj
FSI ∼

∑
n

δ(k1 + k2 − pn)〈π−|ηπ+ |n〉〈n|ηj
B |0〉,

j = u, c. (17)

We assumed here that the source ηB admits a decompo-
sition in two terms, analogous to that of the weak Hamil-
tonian (2). This shows also that one can derive separate
dispersion relations for each of the amplitudes Tu and Tc.
In particular, according to (14), we shall write these rela-
tions in the form

Tj = Tj,0 +
σj

FSI

π
ln

[
m2

π

(mB − mπ)2
− 1

]
, j = u, c, (18)

where we denoted by Tj,0 the analog of the term A0 in the
relation (14), divided by the constant factorized in (15).
For further applications, it is important to notice that

the spectral functions σu
FSI and σc

FSI are real quantities:

σj
FSI = (σ

j
FSI)

∗, j = u, c. (19)

The proof of these equalities is based on the properties of
the matrix elements in (17) under the PT transformation
[30]. More precisely, in the present case, we have [25]

〈π−(k2)|ηπ+(0)|n, in〉 = 〈π−(k2)|ηπ+(0)|n, out〉∗,

〈n, in|ηj
B(0)|0〉 = −〈n, out|ηj

B(0)|0〉∗, (20)

where the minus sign in the second relation is due to the
specific spin–parity properties of the relevant part of the
weak hamiltonian. Using the equalities (20) in (17), and
taking into account the equivalence of the complete sets of
“in” and “out” intermediate states in the unitarity sum, it
is easy to prove the relations (19) (the minus sign in (20)
is compensated by leaving aside an imaginary constant in
the definition (16)).
In approximate calculations, the set of intermediate

states in the unitarity sum (17) is truncated, which might
lead to violations of the reality conditions (19), and to the
appearance of artificial strong phases in the spectral func-
tions. This fact is important in the present case, since the
unitarity sum is evaluated at large c.m. energy squared,
s = m2

B , where many inelastic channels are open. How-
ever, with a “good” choice of the truncated set one can
avoid the appearance of unphysical phases. The idea of
Goldberger and Treiman [37] was to take the intermedi-
ate states in the symmetric combination 1/2|n, in〉〈n, in|+
1/2|n, out〉〈n, out|, which represents also a complete set.
The remarkable point is that, even when it is truncated,
this set generates spectral functions which satisfy the re-
ality condition (19), at each step of the approximation.
The symmetric summation simulates therefore, in a cer-
tain measure, the effects of inelastic states, without incor-
porating them explicitly in the unitarity sum2.
It is worth mentioning that a complete set written in

a symmetric form is quite natural in the LSZ method: in-
deed, when deriving the discontinuity of the amplitude,
the initial θ(x0) function in (7), whose origin is the reduc-
tion of an “out” pion, is actually replaced by θ(x0)/2 +
θ(−x0)/2 [30]. This means that the final two-pion state ap-
pears in the discontinuity in the symmetric combination
1/2|π+π−, out〉 + 1/2|π+π−, in〉 3. It is therefore reason-
able to take the same symmetric combination also for the
intermediate states n.
The Goldberger–Treiman procedure allows us to write

the spectral functions σj
FSI defined in (17) as

σj
FSI =

1
2

∑
n

δ(k1 + k2 − pn)[M∗(n → π+π−)Tj(B → n)

+M(n → π+π−)T ∗
j (B → n)], j = u, c, (21)

whereM(n → π+π−) denotes the amplitude of the strong
transition from the intermediate state n to the final π+π−
state, and Tj(B → n) is the specific part of the weak decay

2 An alternative approach to include the effects of the inelas-
tic states in B hadronic decays, based on statistical arguments
and Regge phenomenology, was proposed in [26,27]

3 A similar symmetric combination of “in” and “out” states
was obtained in a related context in [38]
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amplitude of B into the same intermediate state (divided
by the constant factorized in (15) and (16)).
It is known that the strong dynamics at high ener-

gies is dominated by multiparticle production. However,
as argued in [27], the contribution of the multiparticle in-
termediate states in B decay is suppressed by a flavour
mismatch between the weak and the strong parts of the
process. Therefore, only the states composed of two low
mass resonances are expected to yield an important con-
tribution to the rescattering. As shown in [27], this picture
is consistent with the absence of final state interactions in
B decays in the heavy mass limit [9], since the production
of two resonances is expected to vanish at high energies.
In the two-particle approximation of the unitarity sum,

the weak decay amplitudes are completely specified by the
masses of the particles in the intermediate states, being
independent on the phase space variables [25]. Then the
phase space integration implicit in (21) can be performed
exactly, leading to

σj
FSI =

1
2

∑
P̄aPa,λ

[M∗
0,λ(P̄aPa → π+π−)Tλ

j (B → P̄aPa)

+M0,λ(P̄aPa → π+π−)Tλ∗
j (B → P̄aPa)]

+ . . . , (22)

whereM0,λ(P̄aPa → π+π−) denote the S-wave projection
of the strong amplitudes and a summation over the he-
licities λ of the intermediate states must be peformed in
general. By inserting this expression in (18), and writing
explicitly the real and the imaginary part of the logarithm,
we obtain the relation

Tj(B → π+π−)

= Tj,0(B → π+π−) +

[ ∑
P̄aPa,λ

Re[M∗
0,λ(P̄aPa → π+π−)

×Tλ
j (B → P̄aPa)] + . . .

]

×
[
i +

1
π
ln

(
1− m2

π

(mB − mπ)2

)]
, j = u, c. (23)

The sum includes the dominant two-particle quasielastic
states and resonances P̄aPa, and the dots represent the
contribution of the multiparticle states.
The strong amplitudes entering (23) are evaluated at

the c.m. energy squared equal to m2
B ≈ 25GeV2. For low

masses of the intermediate particles we can use the generic
Regge amplitude [39]

−γ(t)
τ + e−iπα(t)

sinπα(t)

(
s

so

)α(t)

, (24)

where γ(t) is the residue function, τ the signature, α(t) =
α0+α′t the linear trajectory, and s0 ≈ 1GeV2. Modifica-
tions of the standard Regge expression when the particles
have larger masses are discussed in [27]. The S-wave pro-
jection of the amplitude (24) in the spinless case is

M0,0(P̄aPa → π+π−)

≈ ξ
γ(0)
32πα′

1
mBqL

e(α0+α′t0+2α′qq′)L

×
[
1− e−2α′qq′L

]
, (25)

where q = 1/2(m2
B −4m2

π)
1/2 and q′ = 1/2(m2

B −4m2
a)

1/2

are the c.m.s. momenta of the final and intermediate state,
respectively, t0 = −(q2 + q′2), L = lnm2

B/s0 − iπ/2 and
ξ is a signature factor (equal, in particular, to −1 for
the pomeron and i21/2 for the ρ trajectory [25]). In de-
riving (25) we neglected the t dependence of the ratio
γ(t)/ sin(πα(t)/2) for τ = 1 trajectories, and of the ratio
γ(t)/ cos(πα(t)/2) for τ = −1.

4 Quark–hadron duality

The relation between the QCD predictions and the
hadronic physics is an extremely complex, still unsolved
problem. For testing quark–hadron duality it is in princi-
ple necessary to perform an analytic continuation from the
spacelike region of momenta, where operator product ex-
pansions and perturbative QCD are valid, to the timelike
axis, where the physical processes are described in terms
of hadronic degrees of freedom. This procedure, based on
dispersion relations, was applied to simple objects, like
the current–current vacuum correlation functions or the
electromagnetic form factors.
The weak hadronic decays are much more complicated,

due to the presence of hadrons in both initial and final
states. Usually, the strong processes at scales larger than
mb are integrated out, being included in the Wilson co-
efficients entering the effective hamiltonian (2). In per-
turbative QCD, the decay amplitudes are treated in the
heavy mass limit using the framework of perturbative fac-
torization for exclusive processes, based on hard scattering
kernels and light-cone distribution amplitudes, with the
heavy mass playing the same role as the large momentum
transfer.
In the hadronic picture, we shall consider the disper-

sion relation (18) (written in more detail in (23)) where,
as discussed in Sect. 3, the first term Tj,0 is given by the
contributions which remain after switching off the final
state strong interactions among the emitted pions. This
term should be provided, in principle, by a nonperturba-
tive calculation, which excludes in a systematic way the
final state interactions. As such a calculation is lacking, we
resort to a qualitative discussion, based on quark–hadron
duality.
We recall that, according to the discussion below (14),

the terms Tj,0 include the degenerate terms and the last
two dispersive integrals in the relation (11). In all these
terms, the two final pions appear in different matrix el-
ements, and may be associated qualitatively to diagrams
with no gluon exchanges between them. In particular, in
the spirit of the dispersive formalism, the last two integrals
in (11) may be interpreted as “initial state interactions”,
in a crossed channel. Therefore, it is reasonable to assume
that a considerable part of Tj,0 consists of the naive factor-
ized amplitude, which is associated to processes with no
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gluon exchanges between the emitted pion π+ and the sys-
tem (π−B0

d) (except those already included in the Wilson
coefficients and the short distance processes taking place
before hadronization). As for the last term in the relation
(14) (or (23)), which describes in the hadronic picture the
final state strong interactions, it is dual to the topolo-
gies (penguin annihilation, exchange diagrams, scattering
of the spectator quark, vertex corrections to the emission
diagrams), involving gluon exchanges between the final pi-
ons. Of course, the correspondence between various quark
diagrams and the terms appearing in the hadronic for-
malism is not simple beyond the lowest orders of pertur-
bation theory. In particular, it is impossible to associate
in an univocal way the diagrams involving many gluons
either to the initial, or the final state interactions. More-
over, from the point of view of final state interactions,
the spectator quark does not play a special role. There-
fore, the vertex corrections involving the quarks emitted
in the weak process, which are included in the factorized
part of the amplitude in the standard QCD factorization
approach [9], contribute also to the final state interaction
part of the amplitude.
In the QCD factorization approach [9], the dominant

contribution to the decay amplitude is given by the factor-
ized term, with corrections which are suppressed, in the
heavy limit mb → ∞, either by powers of αs(mb), or by
powers of ΛQCD/mb. As discussed recently, the power sup-
pressed corrections might be enhanced by pure soft effects,
such as end point singularities and higher twist terms in
the pion distribution amplitudes, appearing in annihila-
tion diagrams or in the hard spectator interactions. A re-
cent evaluation of these corrections in perturbative QCD
factorization was given in [14], but there are still differ-
ences between the results obtained by different authors.
In what follows we shall estimate the heavy mass cor-

rections produced by the final state interactions, using
the hadronic dispersion relation written in the form (23).
We shall consider first the contribution of the elastic and
quasielastic rescattering, taking as intermediate states
P̄aPa the lowest pseudoscalar mesons π+π−, π0π0, K̄0K0,
K+K− and ηη. The effect of higher resonances describing
inelastic rescattering will be discussed below.
We assume that the amplitudes Tj appearing in (23)

can be expanded in the heavy quark limit, i.e. for large
mB ≈ mb, as

Tj ≈ Tj,0 +O(αs(mB)) +O(Λ/mB) + . . . , (26)

where Tj,0 are approximately given by the factorized am-
plitudes, with short distance corrections. These values
have small imaginary parts, produced by the complex ef-
fective Wilson coefficients, vertex corrections or short dis-
tance effects in the penguin and annihilation diagrams.
It is easy to write down the high energy limit of all the

quantities entering (23). First, from the explicit expression
of the logarithm in the r.h.s. of this relation, it follows that
the real part of FSI amplitude is suppressed by two powers
of the heavy mass with respect to the imaginary part. The
heavy limit behavior of the Regge amplitude (25) depends
of the specific trajectory. For the pomeron (with α0 ≈ 1.0
and α′ ≈ 0.25) we obtain the expansion

M
(P)
0 ≈ γP(0)

4π


 i

ln
m2

B

s0

− π

2
1

ln2 m2
B

s0

+ . . .


 , (27)

which shows that the dominant contribution in the heavy
mass limit is imaginary. At the physical scale, using
γP(0) ≈ 25.6 [25], we obtain M

(P)
0 ≈ −0.23 + 0.69i.

For a physical trajectory, like ρ, using α0 ≈ 0.5 and
α′ ≈ 1, we obtain

M
(ρ)
0 ≈ γρ(0)

16πmB


 i + 1

ln
m2

B

s0

− π

2
1− i
ln2 m2

B

s0

+ . . .


 . (28)

This amplitude is suppressed by one power of mB com-
pared to the pomeron amplitude (27). At the physical
scale, using γρ(0) ≈ 31.4 [25], we obtain for the ρ tra-
jectory Mρ

0 ≈ 0.015 + 0.047i. The masses of the particles
undergoing the strong scattering appear as power sup-
pressed terms in the expansions (27) and (28).
By inserting the expansions (26)–(28) in (23), we can

derive iteratively the magnitude of the coefficients of the
logarithmic and power corrections in the heavy limit ex-
pansion (26). As an illustration of the method, we take as
input of the iterative procedure the values

T0 = Tu,0 = 0.969− 0.017i,
P0 =

Tc,0

Rb
= 0.246 + 0.03i, (29)

which are typical for the factorized amplitude with short
distance corrections [14].
Using these values as the lowest approximation of the

amplitudes Tj in the right hand side of the relation (23),
we obtain to first order

T = Tu,1 ≈ 0.969− 0.23i,
P =

Tc,1

Rb
≈ 0.246 + 0.00012i. (30)

The dominant corrections are given by the pomeron con-
tribution to the elastic channel. In particular, the imag-
inary part of Tu,1 is due mainly to the next to leading
order (second) term in the expansion (27) of the pomeron
amplitude, since the dominant term is suppressed by the
symmetric Goldberger–Treiman summation in (23).
The values (30) have uncertainties due to the higher

order terms in the heavy mass expansion. First we notice
that the contribution of the pseudoscalar mesons π0π0,
K̄0K0, K+K− and ηη, responsible for the quasielastic
rescattering in the unitarity sum of (23), is negligible. In-
deed, these states are produced by non-dominant decay
diagrams, and the corresponding Regge amplitudes are
described by physical trajectories, which are suppressed
with respect to the pomeron. The estimates made in [25],
based on SU(3) flavor symmetry, show that the effect of
these channels on the spectral functions is not larger than
several percents.
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The inelastic states might give an important contribu-
tion in the unitarity sum if they are produced by dominant
decay diagrams, or the corresponding CKM coefficients
are large. The first states which can contribute are the
lowest vector resonances, ρ+ρ−, ρ0ρ0, K̄∗K∗, ωω and φφ,
which describe intermediate states with four or six pions.
The quark diagrams forB decays into V V pairs are similar
to those of the corresponding pseudoscalar mesons. There-
fore, only the pair ρ+ρ− is produced by a dominant tree
diagram. Estimates based on factorization [40] give for the
helicity amplitudes of the weak decay B0

d → ρ+ρ− values
comparable, up to a factor of 2, with the amplitude of
the decay B0

d → π+π−. As concerns the strong amplitude
M(ρ+ρ− → π+π−), it is described in the Regge model by
the exchange of ω and A2, with trajectories α ≈ 0.5 + t
(almost degenerate with that of ρ), and the π exchange,
whose trajectory απ ≈ 0. + 0.9t is non-dominant [39]. As
discussed in [41], the kinematic factors of the t-channel
helicity amplitudes suppress in the present case the con-
tribution of the natural parity exchanges ω and A2, so that
the scattering amplitude of ρ+ρ− → π+π− is described at
small t by π exchange. This implies a considerable suppres-
sion, verified indirectly in the related reactions of vector
meson production π±N → ρ±N [42,43]. Therefore, the
vector meson resonances seem to yield a negligible contri-
bution to the inelastic rescattering in B0

d → π+π− decay.
Using this spin suppression argument, we expect that the
same conclusion applies also to other vector mesons of
higher mass.
The role of the intermediate states with charm, like

the pair D̄D, has been considered by several authors and
is still controversial. Since a large part of the inelastic
ππ scattering at s1/2 ≈ mB goes into multiparticle states
composed of noncharmed mesons, the contribution of
these states was assumed in [27] to be negligible. The an-
nihilation of the c̄c pair in the penguin diagrams proceeds
therefore through a short distance interaction, which can
be computed perturbatively. We mention however that the
possibility of a long distance contribution of the “charming
penguins” was also considered by some authors [44], possi-
bly through the intermediate state D̄D [23,24]. A detailed
estimate is difficult since the validity of the Regge model
is questionable at s1/2 ≈ mB for large masses (mD =
1.68GeV) of the particles undergoing the strong rescat-
tering [27]. We mention that the contribution of high mass
resonances, such as D̄D, is actually suppressed by the
phase space integral in (21), evaluated at fixed s = m2

B .
In the present approach, we assume also that their global
effect is taken into account in a certain measure by the
Goldberger–Treiman symmetric summation. With this as-
sumption, we do not expect other important power cor-
rections in the spectral functions.
From the values given in (30) we obtain∣∣∣∣PT

∣∣∣∣ ≈ 0.246, δ = Arg
[
P

T

]
≈ 14◦, (31)

while the input values (29) correspond to |P0/T0| = 0.25
and Arg[P0/T0] = 8◦. Thus, in the present approach the fi-
nal state interactions do not considerably modify the mod-

ulus and the phase of the ratio P/T . We recall that the
lowest order values Tj,0 depend on the renormalization
scale µ in the Wilson coefficients. It is expected that this
dependence will be diminished by the inclusion of other
terms in the l.h.s. of (23).

5 Conclusions

In the present work we investigated the effects of the final
state interactions to B0

d → π+π− decay in a formalism
based on hadronic unitarity and dispersion relations. We
discussed the heuristic derivation of the dispersion rela-
tions with respect to the momenta of the external parti-
cles, by applying the LSZ procedure to the S-matrix ele-
ment of the weak decay. The ambiguities which affect in
general the off-shell extrapolation of the amplitudes ap-
pear in our formalism in the so-called “degenerate terms”,
produced by the equal-time commutators in the LSZ for-
malism, and in the off-shell quantities entering the spectral
functions.
The evaluation of the dispersion relations in external

momenta is in general very complicated. However, we no-
ticed that the dispersion relation with respect to the mo-
mentum squared of one final pion can be written in the
convenient form (14), where the contribution of the fi-
nal state interactions is separated from other terms, and
involves only on-shell quantities. We used this relation,
written in more detail in (23), as an iterative scheme for
determining the corrections to the factorized amplitude,
generated by the final state interactions in the heavy mass
limit. A nontrivial prediction of the formalism is that the
real part of the FSI contribution is suppressed by two pow-
ers of the heavy mass, compared to the imaginary part.
Using for illustration a numerical input value suggested
by QCD factorization, we noticed the dominant effect of
the next to leading logarithmic term of the pomeron con-
tribution. Other sources of large power corrections to the
factorized amplitude are not found. We discussed the con-
tribution of the lowest pseudoscalar mesons and vector
meson resonances, and assumed that the effects of higher
resonances and multiparticle states are qualitatively taken
into account by the Goldberger–Treiman method of calcu-
lating the spectral functions. In particular, the results of
a numerical test indicate that the phase and the modulus
of the ratio P/T are not drastically modified by the final
state interactions. Using improved results of QCD calcu-
lations, it will be possible to test the dispersion relations
conjectured in the present work and, more generally, the
validity of quark–hadron duality.
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